A Mixed-metal Single-molecule Magnet: [Mn₈Fe₄O₁₂(O₂CCH₂Cl)₁₆(H₂O)₄]

Chen-I Yang, Hui-Lien Tsai,* Gene-Hsiang Lee,[†] Ching-Shuei Wur,^{††} and Shwu-Fen Yang

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 70101

[†]Instrumentation Center, College of Science, National Taiwan University, Taipei, Taiwan 10601

^{††}Department of Physics, National Cheng Kung University, Tainan, Taiwan 70101

(Received October 25, 2004; CL-041256)

The synthesis, X-ray crystal structure and magnetic properties of a new single-molecule magnet $[Mn_8Fe_4O_{12}-(O_2CCH_2Cl)_{16}(H_2O)_4]\cdot 2CH_2CICOOH\cdot 2CH_2Cl_2$ (3·2CH₂-CICOOH·2CH₂Cl₂) are reported. Reduced magnetization data of complex 3 indicate an S = 4 ground state, and the out-of-phase components of AC magnetic susceptibilities have frequency dependent maxima.

Single-molecule magnets (SMMs) are attracting extensive attention because they represent nanoscale magnetic particles of a well-defined size.¹⁻⁶ They display sluggish magnetization relaxation phenomena such as magnetization hysteresis loops and frequency-dependent out-of-phase alternating current (AC) magnetic susceptibilities. The remarkable magnetic properties of an SMM arise from the SMMs high-spin ground state (S) split by a large negative axial zero-field splitting (D) which results in an anisotropy energy barrier of $KV = |D|S_z^{2,7}$ The first SMM reported was $[Mn_{12}O_{12}(O_2CCH_3)_{16}(H_2O)_4] \cdot 2HOAc \cdot 4H_2O$ (1) with an S = 10 ground state and a negative zero-field splitting of $-0.5 \text{ cm}^{-1.1,2,5}$ Since then, the family of SMMs, containing Mn, Fe, V, and Ni, have been reported, including other oxidation levels of the Mn₁₂ family.⁸⁻¹³ In 1994, the partially Fe^{III}-substituted form of complex 1, $[Mn_8Fe_4O_{12}(O_2CCH_3)_{16}(H_2O)_4]$. $2HOAc \cdot 4H_2O(2)$, has been synthesized and characterized with an S = 2 ground state. However, there is no out-of-phase signal observed in the ac susceptibility studies.^{2b} We herein report the new Fe^{III}-substituted SMM complex, [Mn₈Fe₄O₁₂(O₂CCH₂- $Cl_{16}(H_2O)_4] \cdot 2CH_2ClCOOH \cdot 2CH_2Cl_2$ $(3 \cdot 2 C H_2 C I C O O H \cdot$ $2CH_2Cl_2$), which exhibits the out-of-phase (χ'') signals in the ac magnetic measurement. For Mn₁₂ systems the magnetic properties have not been changed obviously by ligand substitutions. It is contradictory for Mn₈Fe₄ complexes, and its ground state is changed insignificantly from an S = 2 of complex **2** to an S = 4of complex 3 by ligand substitution.

The addition of solid KMnO₄ (1.4 mmol) to a solution of FeCl₂•4H₂O (5.0 mmol) and chloroacetic acid (192 mmol) in H₂O generated a brown solution and precipitates were formed after stirred for 3 h. Recrystallization of the precipitates in CH₂Cl₂/hexane gives the X-ray quality crystals of **3**•2CH₂-ClCOOH•2CH₂Cl₂.^{14,15} The crystal structure of complex **3** is shown in Figure 1. Complex **3** crystallizes in the tetragonal space group *I*4₁/*a* and consists of a [Mn₈Fe₄O₁₂]¹⁶⁺ core structure which is similar to that of complex **2**, comprising a central [Mn^{IV}₄O₄] cubane held within a nonplanar ring of four Fe^{III} ions and four Mn^{III} ions by eight μ_3 -O²⁻ ions. High-spin Mn^{III}(d⁴) in near-octahedral symmetry exhibits a Jahn–Teller distortion, whereas high-spin Fe^{III}(d⁵) does not. Thus, Mn(2)–O in the range of 2.202(5)–2.232(5) Å are longer than Fe(1)–O in the range of 2.048(5)–2.074(5) Å in axial direction. Each Mn^{III} ion

Figure 1. The structure of complex **3**. The $-H_2Cl$ groups of ligands, $CH_2ClCOOH$, and CH_2Cl_2 solvate molecules are omitted for clarity.

is bonded to a single Mn^{IV} ion via two $\mu_3\text{-}O^{2-}$ bridges, while each Fe^{III} ion is bonded to two Mn^{IV} ions via two $\mu_3\text{-}O^{2-}$ bridges. The four H_2O ligands coordinate only to Fe^{III} ions.

The solid-state magnetic susceptibility (χ_M) of **2** and **3** were measured in the 2.00–310 K range in 1.0 kG magnetic field and plotted as $\chi_M T$ vs *T* in Figure 2. For **3**, the $\chi_M T$ value at 310 K was 16.42 emu K mol⁻¹, which decreases gradually as temperature is lowered, to reach a plateau with 10.45 emu K mol⁻¹ in 70–20 K, which is close to the value of an S = 4, and then decreases rapidly to 8.47 emu K mol⁻¹ at 2.00 K. This value at 310 K is lower than the spin-only (g = 2) value of 37.00 emu K mol⁻¹ for a Fe^{III}₄Mn^{III}₄Mn^{IV}₄, suggesting the presence of antiferromagnetic exchange interaction in **3**.

To identify the ground spin state of complex 3, magnetization (*M*) measurements were made at 3.0, 2.5, 2.0, and 1.7 K in the ranges of H = 0-70 kG (Figure 3). At 70 kG and 2.0– 3.0 K, the value of $M/N\beta$ is close to 7.3, indicating an S = 4ground state. The reduced magnetization fitting (full matrix di-

Figure 2. Plots of $\chi_M T$ vs temperature at 1.0 kG for complexes **2** (\triangle) and **3** (\bigcirc).

Figure 3. The reduced magnetization of **3** plotted as $M/N\beta$ vs H/T.

Figure 4. Plots of the out-of-phase (χ_M) signals in ac susceptibility studies vs temperature in a 1.0 G field.

agonalization with powder average) gives the spin parameters as an S = 4, g = 1.88, and $D/k_{\rm B} = -1.34$ K with $TIP = 4.04 \times 10^{-2}$ emu mol⁻¹.

Ac magnetization measurements were performed on 3 in the 1.9-50 K range in a 1.0 G ac field oscillating at 0.25-10.0 kHz and the out-of-phase signals of ac susceptibilities were shown in Figure 4. The in-phase signal shows a frequency-dependent decrease at $T \approx 7$ K indicative of the onset of slow magnetic relaxation. The out-of-phase (χ_M'') signals show predominant peaks in the region 2 to 3 K as well as minor peaks at 3-6 K. The analysis of the ac magnetic susceptibility data gives the value of the energy barrier $U_{\rm eff}$ to reorientation between two possible directions of magnetization. When the ac oscillation frequency corresponding to the observed peaks at different temperature was used as the relaxation rate (τ), an Arrhenius plot of $ln(\tau)$ vs 1/T gave the energy barrier $U_{\rm eff} = 45.29$ K and a preexponential factor $\tau_0 = 1.15 \times 10^{-8}$ s for 3–6 K range. The presence of an out-of-phase signal is diagnostic of single-molecule magnetism behavior and is caused by the inability of 3 to relax quickly enough, at this temperature, to keep up with the oscillating field. This establishes that complex 3 is an SMM. These two out-ofphase peaks in Mn₁₂ SMMs have been reported and assigned as due to solvent effect and Jahn–Teller isomerism,⁵ and we believed that this Mn₈Fe₄ SMM exhibits the same effect.

We thank the National Science Council of Taiwan, the Republic of China for financial support.

References and Notes

1 a) R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak,

Nature, **365**, 141 (1993). b) L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, *Nature*, **383**, 145 (1996). c) D. Gatteschi and R. Sessoli, *Angew. Chem., Int. Ed.*, **42**, 268 (2003).

- a) R. Sessoli, H.-L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc., 115, 1804 (1993). b) A. R. Schake, H.-L. Tsai, R. J. Webb, K. Folting, G. Christou, and D. N. Hendrickson, Inorg. Chem., 33, 6020 (1994). c) H.-L. Tsai, D.-M. Chen, C.-I. Yang, T.-Y. Jwo, C.-S. Wur, G.-H. Lee, and Y. Wang, Inorg. Chem. Commun., 4, 511 (2001).
- 3 S. M. J. Aubin, N. R. Dilley, M. W. Wemple, M. B. Maple, G. Christou, and D. N. Hendrickson, *J. Am. Chem. Soc.*, **120**, 839 (1998).
- 4 G. Aromi, S. M. J. Aubin, M. A. Bolcar, G. Christou, H. J. Eppley, K. Folting, D. N. Hendrickson, J. C. Huffman, R. C. Squire, H.-L. Tsai, S. Wang, and M. W. Wemple, *Polyhedron*, **17**, 3005 (1998).
- 5 a) S. M. J. Aubin, Z. Sun, I. A. Guzei, A. L. Rheingold, G. Christou, and D. N. Hendrickson, *Chem. Commun.*, 1997, 2239.
 b) D. Ruiz, Z. Sun, B. Albela, K. Folting, J. Ribas, G. Christou, and D. N. Hendrickson, *Angew. Chem., Int. Ed. Engl.*, 37, 300 (1998).
 c) Z. Sun, D. Ruiz, N. R. Dilley, M. Soler, J. Ribas, K. Folting, M. B. Maple, G. Christou, and D. N. Hendrickson, *Chem. Commun.*, 1999, 1973.
- 6 a) S. M. J. Aubin, S. Spagna, H. J. Eppley, R. E. Sager, G. Christou, and D. N. Hendrickson, *Chem. Commun.*, **1998**, 803.
 b) S. M. J. Aubin, Z. Sun, L. Pardi, J. Krzystek, K. Folting, L.-C. Brunel, A. L. Rheingold, G. Christou, and D. N. Hendrickson, *Inorg. Chem.*, **38**, 5329 (1999).
- 7 a) D. Gatteschi, A. Caneschi, L. Pardi, and R. Sessoli, *Science*, 265, 1054 (1994). b) J. Villain, F. Hartman-Boutron, R. Sessoli, and A. Rettori, *Europhys. Lett.*, 27, 159 (1994).
- a) H. J. Eppley, H.-L. Tsai, N. de Vries, K. Folting, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc., 117, 301 (1995). b)
 H.-L. Tsai, T.-Y. Jwo, G.-H. Lee, and Y. Wang, Chem. Lett., 2000, 346. c) M. Soler, S. K. Chandra, D. Ruiz, E. R. Davidson, D. N. Hendrickson, and G. Christou, Chem. Commun., 2000, 2417.
- 9 a) S. M. J. Aubin, M. Wemple, D. M. Adams, H.-L. Tsai, G. Christou, and D. N. Hendrickson, *J. Am. Chem. Soc.*, 118, 7746 (1996).
 b) J. Yoo, E. K. Brechin, A. Yamaguchi, M. Nakano, J. C. Huffman, A. L. Maniero, L.-C. Brunel, K. Awaga, H. Ishimoto, G. Christou, and D. N. Hendrickson, *Inorg. Chem.*, 39, 3615 (2000).
- 10 a) E. K. Brechin, M. Soler, J. Davidson, D. N. Hendrickson, S. Parsons, and G. Christou, *Chem. Commun.*, **2002**, 2252. b) E. K. Brechin, M. Soler, G. Christou, M. Helliwell, S. J. Teat, and W. Wernsdorfer, *Chem. Commun.*, **2003**, 1276.
- 11 a) A. L. Barra, A. Caneschi, A. Cornia, F. Fabrizi de Biani, D. Gatteschi, C. Sangregorio, R. Sessoli, and L. Sorace, J. Am. Chem. Soc., **121**, 5302 (1999). b) H. Oshio, N. Hoshino, and T. Ito, J. Am. Chem. Soc., **122**, 12602 (2000).
- 12 S. L. Castro, Z. Sun, C. M. Grant, J. C. Bollinger, D. N. Hendrickson, and G. Christou, *J. Am. Chem. Soc.*, **120**, 2365 (1998).
- 13 C. Cadiou, M. Murrie, C. Paulsen, V. Villar, W. Wernsdorfer, and R. E. P. Winpenny, *Chem. Commun.*, 2001, 2666.
- 14 Satisfactory elemental analytical data for 3·5H₂O; Found: C, 15.86; H, 1.66; Fe, 9.15; Mn, 18.00%. Calcd: C, 15.77; H, 1.73; Fe, 8.50; Mn, 18.34%.
- 15 Crystal data for **3**•2CH₂ClCOOH•2CH₂Cl₂, C₃₈H₅₀Cl₂₂Fe₄Mn₈-O₅₂, $M_r = 2781.60$, tetragonal, $I4_1/a$, a = 25.9683(4), c = 13.0247(2) Å, V = 8783.2(2) Å³, T = 150(1) K, Z = 4. $R(R_w) = 0.0769$ (0.1935) GOF = 1.134 for 3871 unique reflections with $I > 2\sigma(I)$ and 304 parameters. The chloroacetic acid and CH₂Cl₂ solvate molecules are disordered. Crystallographic data have been deposited with the CCDC under No. CCDC 231188.