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The synthesis, X-ray crystal structure and magnetic
properties of a new single-molecule magnet [Mn8Fe4O12-
(O2CCH2Cl)16(H2O)4].2CH2ClCOOH.2CH2Cl2 (3.2CH2-
ClCOOH.2CH2Cl2) are reported. Reduced magnetization data
of complex 3 indicate an S ¼ 4 ground state, and the out-of-
phase components of ACmagnetic susceptibilities have frequen-
cy dependent maxima.

Single-molecule magnets (SMMs) are attracting extensive
attention because they represent nanoscale magnetic particles
of a well-defined size.1–6 They display sluggish magnetization
relaxation phenomena such as magnetization hysteresis loops
and frequency-dependent out-of-phase alternating current (AC)
magnetic susceptibilities. The remarkable magnetic properties
of an SMM arise from the SMMs high-spin ground state (S) split
by a large negative axial zero-field splitting (D) which results in
an anisotropy energy barrier of KV ¼ jDjSz2.7 The first SMM re-
ported was [Mn12O12(O2CCH3)16(H2O)4].2HOAc.4H2O (1)
with an S ¼ 10 ground state and a negative zero-field splitting
of �0:5 cm�1.1,2,5 Since then, the family of SMMs, containing
Mn, Fe, V, and Ni, have been reported, including other oxidation
levels of the Mn12 family.8–13 In 1994, the partially FeIII-substi-
tuted form of complex 1, [Mn8Fe4O12(O2CCH3)16(H2O)4].
2HOAc.4H2O (2), has been synthesized and characterized with
an S ¼ 2 ground state. However, there is no out-of-phase signal
observed in the ac susceptibility studies.2b We herein report the
new FeIII-substituted SMM complex, [Mn8Fe4O12(O2CCH2-
Cl)16(H2O)4].2CH2ClCOOH.2CH2Cl2 (3.2CH2ClCOOH.
2CH2Cl2), which exhibits the out-of-phase (�00) signals in the
ac magnetic measurement. For Mn12 systems the magnetic prop-
erties have not been changed obviously by ligand substitutions.
It is contradictory for Mn8Fe4 complexes, and its ground state is
changed insignificantly from an S ¼ 2 of complex 2 to an S ¼ 4
of complex 3 by ligand substitution.

The addition of solid KMnO4 (1.4mmol) to a solution of
FeCl2.4H2O (5.0mmol) and chloroacetic acid (192mmol) in
H2O generated a brown solution and precipitates were formed
after stirred for 3 h. Recrystallization of the precipitates in
CH2Cl2/hexane gives the X-ray quality crystals of 3.2CH2-
ClCOOH.2CH2Cl2.

14,15 The crystal structure of complex 3 is
shown in Figure 1. Complex 3 crystallizes in the tetragonal space
group I41=a and consists of a [Mn8Fe4O12]

16þ core structure
which is similar to that of complex 2, comprising a central
[MnIV4O4] cubane held within a nonplanar ring of four Fe

III ions
and four MnIII ions by eight�3-O

2� ions. High-spin MnIII(d4) in
near-octahedral symmetry exhibits a Jahn–Teller distortion,
whereas high-spin FeIII(d5) does not. Thus, Mn(2)–O in the
range of 2.202(5)–2.232(5) �A are longer than Fe(1)–O in the
range of 2.048(5)–2.074(5) �A in axial direction. Each MnIII ion

is bonded to a single MnIV ion via two m3-O
2� bridges, while

each FeIII ion is bonded to two MnIV ions via two m3-O
2�

bridges. The four H2O ligands coordinate only to FeIII ions.
The solid-state magnetic susceptibility (�M) of 2 and 3 were

measured in the 2.00–310K range in 1.0 kG magnetic field and
plotted as �MT vs T in Figure 2. For 3, the �MT value at 310K
was 16.42 emuKmol�1, which decreases gradually as tempera-
ture is lowered, to reach a plateau with 10.45 emuKmol�1 in
70–20K, which is close to the value of an S ¼ 4, and then de-
creases rapidly to 8.47 emuKmol�1 at 2.00K. This value at
310K is lower than the spin-only (g ¼ 2) value of 37.00
emuKmol�1 for a FeIII4MnIII4MnIV4, suggesting the presence
of antiferromagnetic exchange interaction in 3.

To identify the ground spin state of complex 3, magnetiza-
tion (M) measurements were made at 3.0, 2.5, 2.0, and 1.7K
in the ranges of H ¼ 0{70 kG (Figure 3). At 70 kG and 2.0–
3.0K, the value of M=N� is close to 7.3, indicating an S ¼ 4
ground state. The reduced magnetization fitting (full matrix di-

Mn(1)

O(3)O(2)
Mn(2)

Fe(1)

O(1)

Figure 1. The structure of complex 3. The –H2Cl groups of li-
gands, CH2ClCOOH, and CH2Cl2 solvate molecules are omitted
for clarity.
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Figure 2. Plots of �MT vs temperature at 1.0 kG for complexes
2 ( ) and 3 ( ).
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agonalization with powder average) gives the spin parameters as
an S ¼ 4, g ¼ 1:88, and D=kB ¼ �1:34K with TIP ¼ 4:04�
10�2 emumol�1.

Ac magnetization measurements were performed on 3 in the
1.9–50K range in a 1.0G ac field oscillating at 0.25–10.0 kHz
and the out-of-phase signals of ac susceptibilities were shown
in Figure 4. The in-phase signal shows a frequency-dependent
decrease at T � 7K indicative of the onset of slow magnetic re-
laxation. The out-of-phase (�M

00) signals show predominant
peaks in the region 2 to 3K as well as minor peaks at 3–6K.
The analysis of the ac magnetic susceptibility data gives the val-
ue of the energy barrier Ueff to reorientation between two possi-
ble directions of magnetization. When the ac oscillation frequen-
cy corresponding to the observed peaks at different temperature
was used as the relaxation rate (�), an Arrhenius plot of lnð�Þ vs
1=T gave the energy barrierUeff ¼ 45:29K and a preexponential
factor �0 ¼ 1:15� 10�8 s for 3–6K range. The presence of an
out-of-phase signal is diagnostic of single-molecule magnetism
behavior and is caused by the inability of 3 to relax quickly
enough, at this temperature, to keep up with the oscillating field.
This establishes that complex 3 is an SMM. These two out-of-
phase peaks in Mn12 SMMs have been reported and assigned
as due to solvent effect and Jahn–Teller isomerism,5 and we be-
lieved that this Mn8Fe4 SMM exhibits the same effect.

We thank the National Science Council of Taiwan, the
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Figure 3. The reduced magnetization of 3 plotted as M=N� vs
H=T .
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Figure 4. Plots of the out-of-phase (�M
00) signals in ac suscepti-

bility studies vs temperature in a 1.0G field.
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